Certified Descent Algorithm for shape optimization driven by fully-computable a posteriori error estimators

نویسندگان

  • Matteo Giacomini
  • Olivier Pantz
  • Karim Trabelsi
  • M. Giacomini
  • K. Trabelsi
چکیده

In this paper we introduce a novel certified shape optimization strategy named Certified Descent Algorithm (CDA) to account for the numerical error introduced by the Finite Element approximation of the shape gradient. We present a goal-oriented procedure to derive a certified upper bound of the error in the shape gradient and we construct a fully-computable, constant-free a posteriori error estimator inspired by the complementary energy principle. The resulting CDA is able to identify a genuine descent direction at each iteration and features a reliable stopping criterion. After validating the error estimator, some numerical simulations of the resulting certified shape optimization strategy are presented for the well-known inverse identification problem of Electrical Impedance Tomography.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

A-posteriori Modeling Error Estimation for Hierarchic Plate Models 1

Hierarchic plate models are dimensional reductions obtained by semidiscretization of the three-dimensional plate problem in the transverse direction and energy projection. We derive computable a-posteriori estimators for the modeling error thus incurred under the assumption that the resulting two-dimensional plate models are solved exactly. The estimators are valid for homogeneous, monoclinic m...

متن کامل

Certified Reduced Basis Method for the Electric Field Integral Equation

In [5], a reduced basis method (RBM) for the electric field integral equation (EFIE) based on the boundary element method (BEM) is developed, based on a simplified a posteriori error estimator for the Greedy-based snapshot selection. In this paper, we extend this work and propose a certified RBM for the EFIE based on a mathematically rigorous a posteriori estimator. The main difficulty of the c...

متن کامل

An a posteriori-based, fully adaptive algorithm with adaptive stopping criteria and mesh refinement for thermal multiphase compositional flows in porous media

In this work we develop an a posteriori-based adaptive algorithm for thermal multiphase compositional flows in porous media. The key ingredient are fully computable a posteriori error estimates, bounding the dual norm of the residual supplemented by a nonconformity evaluation term. The theory hinges on assumptions that allow the application to variety of discretization methods. The estimators a...

متن کامل

Local a posteriori estimates for pointwise gradient errors in finite element methods for elliptic problems

We prove local a posteriori error estimates for pointwise gradient errors in finite element methods for a second-order linear elliptic model problem. First we split the local gradient error into a computable local residual term and a weaker global norm of the finite element error (the “pollution term”). Using a mesh-dependent weight, the residual term is bounded in a sharply localized fashion. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017